ECOLE NATIONALE SUPERIEURE DES TELECOMMUNICATIONS

PROJECT REPORT

Development of an open source HT'TP proxy with ICAP
support for the POESIA project.

Department : Computer Science and Networks
Students : Fares TRIKI and Riadh ELLOUMI

Monitors : Sylvie VIGNES (ENST) and Basile STARYNKEVITCH (CEA)

March - June 2003

Contents

Résumé (FR) 3
Introduction 4
1 Presentation of POESIA project 6
1.1 Overview o 6
1.2 ICAP communication 6
1.2.1 Example: blocking unauthorized content at the request time, figure 1.1 . 8

1.2.2 FExample: blocking unauthorized content at the response time, figure 1.2 9

1.3 POEKSIA requirements for an open proxy server 12
1.3.1 Configuration of the proxy 12

1.3.2 Caching 12

1.3.3 Buffering 13

134 Stability 13

1.3.5 Security e 13

1.3.6 Scalability 14

2 Design of the proxy server 15
2.1 Description of Middlemano 15
2.1.1 Multithreading 15

2.1.2 Caching e 15

2.1.3 Configuration L e 16

2.2 Upgrading Middleman to Shweby L.

221

2.2.2

2.2.3

2.24

2.25

ICAP implementation L.
Adding of gzip encoding and decoding
Using keep-alive connections
Testing and debugging the proxy

Configuration of Shweby and deployment scenario

3 Next Shweby developments

3.1 Upgrading the Web interface to ICAP support

3.2 Advanced ICAP features

3.3 Using Shweby in other applications

Conclusion

Bibliography

21

21

21

22

23

24

Résumé (FR)

POESIA est un projet européen de filtrage de contenu Internet (Web, email et news) pour
protéger les enfants des contenus violents, pornographiques ou racistes. Dans ce projet, on
a besoin d’un proxy HTTP qui va servir les clients Web en pages passées au crible par les
filtres de POESIA. Pour communiquer avec le module de filtrage de POESIA, Shweby utilise
le protocole ICAP.

Shweby est donc un proxy HT'TP et un client ICAP congu dans le but d’étre intégré dans
le projet POESTA. Néanmoins, Shweby peut s’intégrer avec tout serveur ICAP pour d’autres
applications comme la traduction de texte, le filtrage du contenu, la détection de virus...

Pour le développement de Shweby, nous sommes partis d’un proxy HTTP, nommé " Mid-
dleman " et distribué sous la licence GNU GPL. Dans nos développements nous nous sommes
focalisés a avoir dans Shweby les caractéristiques pré-requises pour étre intégré dans le projet
POESIA. 11 faut que Shweby permette de changer les niveaux de filtrage (filtrage pour les
enfants, filtrage pour les adolescents, filtrage pour adultes), qu’il soit robuste, sécurisé et qu’il
puisse éventuellement cacher les données.

La conception du noyau de Shweby est basée sur les threads POSIX et sur la mise en
tampon de tous les messages HTTP. Cette conception s’adapte parfaitement au contexte du
logiciel POESIA qui est congu pour servir quelques dizaines d’ordinateurs et ne prévoit pas le
passage a 1’échelle.

Le projet POESIA est actuellement en libre diffusion dans la communauté du libre.
Il est hébergé par la plate forme Sourceforge.net et son adresse web est http://shweby.
sourceforge.net. La prochaine étape dans le projet est le développement d’une interface
utilisateur pour la configuration de Shweby.

Introduction

Protecting the young people from the harmful content of the Internet is becoming a very
important concern. The Internet is growing fast, and there are no or very few control mecha-
nisms over harmful content. Moreover, this content is financed by powerful organizations like
pornographic industry. As a result, it is now urging to find how we could protect efficiently
our youth.

Nowadays, there are many proprietary filtering software solutions that can efficiently filter
the harmful content. But these solutions are expensive and may not be affordable to little
educational establishments. They are also mostly designed to filter English-speaking web sites.
There is a need for an open source filter because we can afford easily such software and we
can adapt it to specific languages and cultural differences between countries.

The POESIA project [1] (Public Opensource Environment for a Safer Internet Access)
is an open source Internet content filter funded by the European Commission. This project
alms to become the standard filtering solution deployed by educational institutions and for
home use. Open extensible architecture enables POESIA software to filter harmful content in
several channels (Web, Email, News) and to deploy many kinds of filters: natural language
filters (English, Spanish and Italian), image filters, Javascript filters...

The web channel of POESIA needs an HTTP proxy server. That proxy server will be
operate on behalf of the browser client and will download the web page before scanning its
content by calling filter devices. The Shweby project aims to develop an open source stable
HTTP proxy in order to be integrated in POESIA software set. We will try in this paper to
describe the requirements of POESIA for an open source HT'TP proxy server and to explain
how Shweby was designed in order to obey these requirements.

The use of Shweby will not be restrained in POESIA software. The conformance to open
Internet standards will enable Shweby to be an open source solution for content adaptation.
This will be achieved by implementing the ICAP (Internet Content Adaptation Protocol) in
Shweby proxy server. The ICAP protocol [2] is designed by the IETF [3] (Internet Engineering
Task Force) in order to allow web proxies to contact ICAP servers and ask them for a content
modification of the HTTP requests or the HTTP responses. The content adaptation has
many useful applications such as text translation, virus scanning, adapting web pages to
small devices (PDAs, Cell phones), advertising banner insertion or removal, etc.

Open source community has welcomed the announcement of Shweby’s first releases. There
were some interesting feedbacks about these releases. We will try to promote developing, test-

ing and documenting Shweby in the open source community. The future steps in developing
Shweby will be testing interoperability with most ICAP servers, even open source or commer-
cial, and to define a framework for developing proxylets.

Chapter 1

Presentation of POESIA project

1.1 Overview

POESIA software is designed to filter Internet content in three channels (web, email and
news). In this project, we will be interested only in web channel. The architecture of POESTA
is composed of some different devices: All the HTTP flow will go through the HTTP proxy
which will ask the POESIA monitor for the content filtering. The communication between
the proxy and the monitor is based on the ICAP protocol. The monitor communicates with
some specific filters (Spanish, English, French; language detectors; image filters; Javascript;
URL filters...) and decisors or decisions mechanisms.

POESIA is targeted for situations where groups of computers are used for Internet brows-
ing, such as classrooms, libraries, computer centers and business. The number of computers
will not exceed 20, because POESIA is installed on a single computer and CPU resources
bound filtering capabilities.

1.2 ICAP communication

The ICAP protocol is fully explained in RFC 3507 [2]. When the proxy receives an HTTP
request or an HT'TP reply, it encapsulates it in an I[CAP request and sends it to the monitor,
which plays the role of the ICAP server. The monitor replies by an ICAP message that
encapsulates a modified HT'TP request or response.

The purpose of ICAP protocol is content adaptation, but we use it only in filtering purpose
in POESIA software. The monitor will not "modify" the ICAP request, it will only accept or
reject it. Here are two examples:

ICAP server ’

ICAP ICAP
REQMOD 2 3 Q response
request
HTTPrequest | [| ; ICAP
> . client |
1 |
HTTP HTTP
client HTTP proxy server
HTTP response | [LL]
4 ICAP
client
[ICAP server]

Figure 1.1: Example: blocking unauthorized content at the request time

1.2.1 Example: blocking unauthorized content at the request time, figure
1.1

The client requests a porno web page, for example www.sex.com. The client browser sends
a request to the proxy (step 1).

GET /index.html HTTP/1.1
Host: www.sex.com
User-Agent: Mozilla
Connection: keep-alive

The proxy will encapsulate the HT'TP request in an ICAP request and send it to the
monitor (step 2):

REQMOD icap://monitor.school.com/filter ICAP/1.0
Host: monitor.school.com
Encapsulated: req-hdr=0, null-body=68

GET /index.html HTTP/1.1
Host: www.sex.com
User-Agent: Mozilla

The ICAP request begins with REQMOD, which is the ICAP method used. REQMOD
means request modification and RESPMOD means response modification. There is a specific
ICAP header "Encapsulated" which indicates what’s the nature of the HTTP message (req
for requests), if there is a body (null-body when no body exists) and the length of the HTTP
headers (68). We assume that the monitor interrogates a database of unauthorized web servers
and finds the url (www.sex.com) on it. Thus the ICAP reply will look like this (step 3):

ICAP/1.0 200 OK

Date: Mon, 10 Jan 2000 09:55:21 GMT
Server: POESIA-Monitor/1.0

Connection: close

ISTag: "W3E4R7U9-L2E4-2"

Encapsulated: res-hdr=0, res-body=(...)

HTTP/1.1 403 Forbidden

Date: Wed, 08 Nov 2000 16:02:10 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Thu, 02 Nov 2000 13:51:37 GMT
ETag: "63600-1989-3a017169"

Content-Length: 58

Content-Type: text/html

3a
Sorry, you are not allowed to access that naughty content.
0

According to the ICAP protocol, when the proxy receives an HT'TP response for an HTTP
request in an ICAP transaction, it will deliver the response to the web client (step 4):

HTTP/1.1 403 Forbidden

Date: Wed, 08 Nov 2000 16:02:10 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Thu, 02 Nov 2000 13:51:37 GMT
ETag: "63600-1989-3a017169"

Content-Length: 58

Content-Type: text/html

Connection: close

Sorry, you are not allowed to access that naughty content.

Notice in this example the use of chunked transfer-encoding in ICAP communication.

1.2.2 Example: blocking unauthorized content at the response time, figure
1.2

When the web client requests a web content that we cannot identify as forbidden or not
from its URL, we must download the content before scanning it. In this example, the requested
url is www.unknown-server.com. The client sends its request to the proxy like this (step 1):

GET /index.html HTTP/1.1
Host: www.unknow-server.com
User-Agent: Mozilla

The proxy forwards it to the monitor like in the previous example. The monitor will not
block the request, and will reply like this (step 3):

ICAP/1.0 200 OK

Date: Mon, 10 Jan 2000 09:55:21 GMT
Server: POESIA-Monitor/1.0

Connection: close

ISTag: "W3E4R7U9-L2E4-2"

Encapsulated: res-hdr=0, null-body=(...)

GET /index.html HTTP/1.1
Host: www.unknow-server.com
User-Agent: Mozilla

‘ ICAP server ’

ICAP ICAP
REQMOD 2 3 reply
request

HTTP reqlJAest] | ICAP i [] motified HTTP request

client
1 4

&
A

HTTP

client HTTP

HTTP Proxy server

modified HTTP reply - - HTTP reply

8 | ICAP | s
| client |
ICAP ICAP
reply i 76 ! RESPMOD
request
[ICAP server]

Figure 1.2: Example: blocking unauthorized content at the reply time

10

The monitor hasn’t changed anything in the request. In the ICAP protocol, the ICAP
server can say that he will not change the HTTP request (or the response), if the proxy asks
him to do so, by providing a 204 "No content" response. In this case, the proxy must store
the HTTP message in a buffer before asking the ICAP server for an adapatation. We suppose
now that the proxy has contacted www.unknown-server.com and got some naughty content.
The ICAP transaction will look like this:

From the proxy to the monitor (step 6):

RESPMOD icap://icap.example.org/satisf ICAP/1.0
Host: icap.example.org
Encapsulated: req-hdr=0, res-hdr=(...), res-body=(...)

GET /origin-resource HTTP/1.1

Host: www.origin-server.com

Accept: text/html, text/plain, image/gif
Accept-Encoding: gzip, compress

HTTP/1.1 200 OK

Date: Mon, 10 Jan 2000 09:52:22 GMT
Server: Apache/1.3.6 (Unix)

ETag: "63840-1ab7-378d415b"
Content-Type: text/html

1d
Here is some naughty content.
0

From the monitor to the proxy (step 7):

ICAP/1.0 200 OK

Date: Mon, 10 Jan 2000 09:55:21 GMT
Server: POESIA-Monitor/1.0

Connection: close

ISTag: "W3E4R7U9-L2E4-2"

Encapsulated: res-hdr=0, res-body=(...)

HTTP/1.1 403 Forbidden

Date: Wed, 08 Nov 2000 16:02:10 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Thu, 02 Nov 2000 13:51:37 GMT
ETag: "63600-1989-3a017169"

Content-Length: 58

Content-Type: text/html

3a

11

Sorry, you are not allowed to access that naughty content.
0

Thus the final response to the server will be (step 8):

HTTP/1.1 403 Forbidden

Date: Wed, 08 Nov 2000 16:02:10 GMT

Server: Apache/1.3.12 (Unix)

Last-Modified: Thu, 02 Nov 2000 13:51:37 GMT
ETag: "63600-1989-3a017169"

Content-Length: 58

Content-Type: text/html

Connection: close

Sorry, you are not allowed to access that naughty content.

If the monitor accepts the content, it will reply with code 200 or 204. The origin content
will be provided to the client.

1.3 POESIA requirements for an open proxy server

Before we develop Shweby proxy server, the proxy used in POESIA was Squid-ICAP [4].
Squid-ICAP is an ICAP enabled version of Squid [5]. Although Squid is a popular, stable
and scalable HTTP proxy, Squid-ICAP has still some bugs and maintaining it is a quite hard
work. The POESIA project requires a stable ICAP implementation, even not scalable. That’s
the reason why we have developed Shweby proxy server.

We will explain here what are the requirements of POESIA.

1.3.1 Configuration of the proxy

POESTA software can support few levels of filtering, like kid filter, teenager filter and adult
filter. The filtering level is managed by the system administrator and depends on client IP
addresses. We must be able to configure the proxy to a suitable filtering level and to change
the configuration without restarting the proxy.

1.3.2 Caching

Because we are serving many computers with Internet content, caching will reduce the
response time and will save outgoing bandwidth. We can cache the content before or after
filtering. The POESTA filter will be called after the cache, because this provides more security

12

to users when they change. For example, when the kids take the place of the adults, we must
simply change the POESIA filter and we don’t need to empty the cache.

1.3.3 Buffering

The POESIA monitor requires buffering. It will wait for the whole ICAP request before it
can make a decision, and the content is fully accepted or fully rejected. Given the fact that in
HTTP protocol, servers may not provide the content-length header, we cannot know in advance
what’s the length of the delivered content, and the monitor buffers could be completely filled.
It would be better to perform content buffering in the server-side of the proxy. If the received
content exceeds a limit (10Mb), the proxy will reject it and send an error message to the
client browser. This limitation is large enough for web browsing but it will forbid long file
downloading.

1.3.4 Stability

The stability of the proxy server is an important POESIA requirement. The proxy must
run for months without breaking down.

1.3.5 Security

The proxy must protect himself against hacking attacks (e.g. by Telnet). The POESIA
end-user will not be allowed to bypass the proxy by changing its browser configuration. This
will be achieved by transparent proxying, which means that the browser connects directly to
the Internet, but POESIA gateway forwards all the requests to the proxy. Thus the proxy
must support transparent requests (or direct requests). The only difference between a proxy
request and a transparent request is that a proxy request contains the full URI in the first line
and the transparent request contains only the path in the first line, the name of the server is
provided by "Host" header in both requests.

Example of a proxy request:

GET http://www.google.com/index.html HTTP/1.1
Host: www.google.com

Example of a transparent (direct) request:

GET /index.html HTTP/1.1
Host: www.google.com

13

1.3.6 Scalability

The POESIA software is targeted to a public of 20 PCs. We assume that each PC user
requests a web page every 10 seconds and each web page includes 10 components, the generated
load is 20 requests per second. Thus the web proxy will handle 20 request per second.

POESIA is not designed to scale to a huge public of PC clients. So it does not require a
scalable web proxy.

14

Chapter 2

Design of the proxy server

One big advantage of developing under the GNU GPL licence is that we can start the
development from another source code distributed under the same licence. In this project,
called Shweby, we tried to enhance Middleman to ICAP support. Middleman [6] is an open
proxy server with features designed to increase privacy and remove unwanted content. For
example, Middleman enables the user to block unwanted content like banners, to remove
cookies from request headers, to filter delivered content by simple scripts, etc. The first step
in developing Shweby was removing these unwanted features and keeping wanted features like
caching and transparent proxying.

2.1 Description of Middleman

2.1.1 Multithreading

The Middleman’s design is based on multithreading. There is no thread pool in Middleman;
Threads are created when clients connect to the proxy and are destroyed when clients are
disconnected. Each thread serves a client connection. The proxy listens on some configurable
ports. When a client makes a TCP connection to the proxy, the socket returned by accept is
recorded in a structure called connection. The connection is attached as an attribute to a
new created POSIX thread. This thread will serve the client requests coming from the TCP
connection.

2.1.2 Caching

Middleman implements the HTTP caching [7]. HTTP caching requires two mechanisms:
expiration model and validation model. When a client requests a cached file, the proxy must
verify if the cached file is not expired. If it is not, the proxy delivers the cached file to the client
as a response. If the cached file is expired, the proxy must send a conditional request to the
origin web server (or to the next caching proxy). The conditional request is an HTTP request

15

with the header "If-Modified-Since" followed by the time when the proxy has downloaded the
file. If the cached file is expired, the server replies by a fresh copy and the proxy updates its
cached copy, else the server responds with a special status code (usually, 304 (Not Modified))
with no body and the proxy validates its cache entry.

2.1.3 Configuration

Middleman reads its configuration at runtime from an XML file. The structure of the
XML file is fully explained in README.html. We can configure Middleman by its web interface:
we simply request URL http://mman on a web browser connected to Middleman. We have
changed the URL to http://shweby, but these types of URLs won’t be accepted by system
administrators because they break the addressing plan in the local network. This URL should
be changed to the host machine address.

Middleman uses an embedded XML parser coded in src/xml.c.

2.2 Upgrading Middleman to Shweby

2.2.1 ICAP implementation

The ICAP RFC [2]| introduces the concept of "ICAP services". An ICAP service is a
specific resource of an ICAP server. It is identified by its URI (Uniform Resource Identifier),
which is composed of the protocol name (icap), the name of the server and the path of the
service. Here is an example of ICAP service URI:

icap://icap.net/services/tranlate?lang=fr

When we send an ICAP request to an ICAP service, we request a specific value added
service on the encapsulated HT'TP message. This service can take place at different points,
called vectoring points:

e reqmod_precache: the request is modified by ICAP server "in its way to the cache".
The request is modified before looking in the proxy cache.

e reqmod_postcache: the request is modified by ICAP server "in its way to origin server".
e respmod_precache: the origin server’s reply is modified before it is stored in the cache.

e respmod_postcache: the reply is modified by ICAP server "in its way to the client".

We can call one or many ICAP services in each vectoring point, in a precise order. The
ICAP services are grouped in ICAP classes. ICAP classes can include one or many ICAP
services with their associated vectoring points. The ICAP class defines a global value added

16

service for the HT'TP session. For example we define an ICAP class called “kids-filter” in table
2.1.

ICAP service Vectoring point
icap://monitor.school.net/req-filter?level=kids | reqmod_precache
icap://avirus.school.net/virus-scanning respmod_precache
icap://monitor.school.net/res-filter?level=kids | respmod_postcache

Table 2.1: Structure of the ICAP class “kids-filter”.

In the ICAP class "kids-filter", there is a filter service for requests, a filter service for
responses and a virus-scanning service for responses. The virus scanning is performed before
storing the file in the cache, so the cache will be not infected, but may contain porno images
because response filtering is done after caching.

When a client connects to the proxy, the selected ICAP service depends on the client 1P
address, the proxy port to which the client is connected and the access rules stored in the
XML configuration file. The selection of the ICAP class is coded in src/main.c.

The entity of the proxy that communicates with an ICAP service is called an ICAP client.
ICAP clients are stored in structures of type ICAP_CLIENT and are coded in src/icap.c. The
connection contains the references to theses structures in connection->icap

2.2.2 Adding of gzip encoding and decoding

In order to perform content adaptation, ICAP servers must systematically decompress any
compressed file before analysing it and this needs CPU resources. However, the advantage
of requesting compressed content from the Internet is to save the access bandwidth. Thus,
it would be interesting to decompress downloaded content prior to sending them to ICAP
servers.

2.2.3 Using keep-alive connections

Keep-alive connections increase performances. Middleman keeps the connection alive with
HTTP servers, even if the client requests a closed connection. The alive connections are put
in a socket pool in order to be used for other HT'TP requests.

We have used the same mechanism in ICAP implementation. The alive ICAP connections
are also put in the socket pool and reused for other ICAP sessions.

2.2.4 Testing and debugging the proxy

For the tests, we developed testing scripts with Python and asyncore library. These testing
scripts are committed in test module under the CVS repository. Here are the test components:

17

e The HTTP client, coded in Python. It uses the asyncore Python library.
e The HTTP server, which based on Medusa Server [8].

e The ICAP server, which is a patched version of Network Appliance open source server.
The ICAP server does not modify HT'T'P messages.

The HT'TP client sends a request to the HI'TP server through the proxy. Each request,
identified by a number, makes the system work on a specific HI'TP configuration. We can
experiment POST requests, GET requests, chunking, keep-alive connections and closed con-
nections.

We can test the thread synchronisation by running two HT'TP clients in a loop.

Debugging is made by GDB (GNU Debugger). Memory leaks can be detected in debugging
mode by logging all allocated memory addresses in the table marray. See src/mem.c for more
details.

2.2.5 Configuration of Shweby and deployment scenario

We will explain here an example of deploying Shweby in POESIA environment. We con-
sider the case of a school having two computer rooms A and B. We assume that we can identify
if a computer is in room A or room B by its IP address. We assume that POESIA components
(Shweby, monitor and filters) are running in a machine called "gateway" and this machine is
located in the administrator office.

The room A will be occupied by kids and room B will be occupied by teenagers. The
system administrator must configure POESIA to filter requests coming from room A by "kids-
filter" ICAP class and requests coming from room B by "teenagers-filter" ICAP class. On
his machine "gateway", the system administrator can surf the web without filtering and can
also test "kids-filter" and "teenagers-filter". He can configure Shweby proxy directly from his
machine by requesting the Shweby web configuration interface. POESIA filters can download
web content through Shweby proxy without filtering, in order to know if a web pages contains
any porn pictures.

To achieve these requirements, we configure Shweby with three listening ports. If a client
connects to a port, given his IP address and the rules below (table 2.2), the proxy will perform
suitable ICAP filtering. We suppose that we have already configured three ICAP services:
"kids-filter", "teenagers-filter" and "bypass", which means no filtering.

Here is how these rules are coded in the XML file:

<!-- Access control description -->
<access>
<policy>deny</policy>
<allow>

<enabled>true</enabled>

18

IP address || Port 4000 Port 4001 Port 4002
Gateway configuration configuration configuration
class = kids-filter class = teenagers-filter | class = bypass
Room A class = kids-filter Not allowed Not allowed
Room B class = teenagers-filter | Not allowed Not allowed

Table 2.2: Example of deploying POESIA: table of access rules.

<comment>No filtering on Gateway:4000</comment>
<class>bypass</class>
<ip>127.0.0.1</ip>
<port>4000</port>
<access>config,proxy,connect,http,transparent</access>
</allow>
<allow>
<enabled>true</enabled>
<comment>to test teenagers-filter on Gateway:4001</comment>
<class>teenagers-filter</class>
<ip>127.0.0.1</ip>
<port>4001</port>
<access>config,proxy,connect,http,transparent</access>
</allow>
<allow>
<enabled>true</enabled>
<comment>to test kids-filter on Gateway:4002</comment>
<class>kids-filter</class>
<ip>127.0.0.1</ip>
<port>4002</port>
<access>config,proxy,connect,http,transparent</access>
</allow>
<allow>
<enabled>true</enabled>
<comment>Room A: filter for kids on Gateway:4000</comment>
<class>kids-filter</class>
<ip>137.194.34.5</ip>
<iprange>137.194.34.8-137.194.34.50</iprange>
<port>4000</port>
<access>proxy,http,transparent</access>
</allow>
<allow>
<enabled>true</enabled>
<comment>Room B: filter for teenagers on Gateway:4000</comment>
<class>teenagers-filter</class>
<iprange>137.194.34.51-137.194.34.80</iprange>
<ip>137.194.34.88</ip>

19

<iprange>137.194.34.90-137.194.34.96</iprange>
<port>4000</port>
<access>proxy,http,transparent</access>
</allow>
</access>

20

Chapter 3

Next Shweby developments

The Shweby proxy server is hosted on Sourceforge.net platform. Its web site is http://
shweby.sourceforge.net. The Sourceforge platform will offer to our project a large diffusion
in the open source community. We will be pleased to find people contributing to Shweby
development and tests.

Shweby is not a finished product. The next step in developing Shweby is the configuration
web interface.

3.1 Upgrading the Web interface to ICAP support

In release 0.9.1 of Shweby, there is a web interface obtained by typing http://shweby in
the web browser. We must change this URL to the machine name, in order to respect the
naming plan of network administrators. In addition, the web interface don’t know anything
about ICAP. Thus we must implement setting up ICAP classes and services, and selecting
ICAP classes in the access lists.

The Middleman web interface is written on C. We think that this is not the best choice to
implement a web interface. It would be simpler to write it with a scripting language (Python,
Perl, ...). The web script can communicate with the proxy process by different manners
(signals, CGI, embedded interpreter, etc)

3.2 Advanced ICAP features

The ICAP RFC [2] describes some mechanisms that upgrade performances and save band-
width. The OPTIONS method allows the client to know what type of content the ICAP server
is interested in. The preview mode enables the client to send a "preview" of the content, i.e.
the HT'TP headers and a small part of the beginning of the body. If the server needs to
consider the entire file, it will ask the client to send it, else it will deliver the response. This

21

mode can be helpful for other types of applications like virus scanning, image conversion, etc.

3.3 Using Shweby in other applications

Our target is to run Shweby in many purposes. So we will test its interoperability with
other products, even commercial products. But the non-scalability of Shweby is a handicap for
its use in a large context. Thus we may upgrade the Shweby core design to more performance
and scalability.

22

Conclusion

This project was a good introduction for us in the open source world. The open source
community welcomed the announcement of Shweby and we had some interesting feedbacks
about the software.

The Shweby and POESIA projects are part of a big project for enabling content services
at the edge of the Networks, particularly for education and small businesses, which could not
afford for expensive commercial licenses. The project of enabling content services at the edge
is being standardized by the IETF working group OPES. This project is quite interesting
because it allows different communities to adapt the web to their culture, for example by
filtering undesired content and translating web pages. However, will this project increase web
censure and limit the liberty of expression?

23

List of Figures

1.1 Example: blocking unauthorized content at the request time

1.2 Example: blocking unauthorized content at the reply time .

24

Bibliography

1]
2]
131
[4]
[5]
[6]
7]
8]

Web site of POESIA Project, http://www.poesia-filter.org/

ICAP RFC, http://wuw.ietf.org/rfc/rfc3507.txt

IETF web site, http://www.ietf.org/

Squid-ICAP web site, http://icap-server.sourceforge.net/squid.html
Squid web site, http://www.squid-cache.org/

Middleman project site, http://www.sourceforge.net/projects/middle-man/
HTTP RFC, http://www.ietf.org/rfc/rfc2616.txt

Medusa HTTP Server web site, http://www.nightmare.com/medusa/

25

